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Separative Diffusion in the Transient State. 111. 
Diffusion of a Heavy Fluid in a Cone 

L. MILLER 
NATIONAL CHEMICAL RESEARCH LABORATORY 
COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH 
PRETORIA 0001, SOUTH AFRICA 

Abstract 

Diffusion of a heavy fluid into a cone is approximately one-dimensional. This 
process can be calculated by the differential equation of diffusion with chemical 
reaction. Numerical computation was applied for the study of separative diffusion. 
Separation factors and output quantities were found for cone angles of +30, + 5 ,  and 
-5" and for double barrier thickness. A periodic quasi-steady-state process is 
proposed which yields a reasonable output with tenfold steady-state separation. 

INTRODUCTION 

A cone can be considered as a section of a sphere. When we have 
impermeable walls and no convection of the diffusing substance, the diffusion 
field shows the features of spherical diffusion. This can be demonstrated by 
diffusion of a dye from the bottom of a glass funnel into the cone of the funnel 
filled with a gel medium. The diffusion front, which is initially plane, turns 
during the diffusion process into curved spherical shells having their center in 
the tip of the cone. However, when we allow a solution of colored salt to 
diffuse at the same geometry into liquid water, the areas of constant 
concentration are not indicated by spherical shells but by plane layers. At 
low viscosity the curved areas are unstable and are leveled down by 
convection. The result is an approximately one-dimensional diffusion 
process. 
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1644 MILLER 

ONE-DIMENSIONAL DIFFUSION PROCESS IN A CONE 

For the calculation of the process we make the fisllowing assumptions (Fig. 
1). The bottom of the cone is given by a circular area with radius ro = 1 at 
z = 0. In this area the concentration is always 

co = 1 = constant ( l a )  

for all times t .  while for 

O < Z < Z T  

c = 0 at t=  0 

During the diffusion process the concentrations in the cone are constant for 
a certain z. Therefore the problem is solved when the diffusion process in the 
cylindrical column above the bottom area is known. We describe the process 
from a phenomenological view: Convection processes which establish 
continuously hydrostatic equilibrium at a microscopic scale do not appear in 

FIG. 1. Geometry of diffusion pro'blems. 
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SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. I l l  1645 

our evaluation because they act faster than diffusion, and diffision remains 
the rate-determining process. 

The effective phenomenological diffusion coefficient is found in the 
following way: The differential equation of the diffusion in the cylinder above 
the bottom area is the same as for a diffusion process in the course of which 
parts of the freely diffusing substance “disappear” or “become fixed” by an 
irreversible chemical reaction. In our case the “disappearance” is caused by 
horizontal spreading into layers which increase with z .  Then, according to 
Crank (I), the diffusion is governed by the equation 

ac a 2 c  as 
at -Dd22-- at 

-- 

where c is the concentration of the free solute and s is the concentration of the 
immobilized solute. 

From Fig. 1 we find the ratio 

R = s/c (3a)  

At  a certain z the total amount of substance in a layer with thickness dz 
is 

N(=) = c ( z ) (  ro + z tg ( Y ) ~ T  dz 

while the amount of “free” substance is 

C ( z )  = C ( Z ) ~ ; T T  dz 

The difference N(z) - C(z) = S(z) is the “immobilized” substance which 

As we refer both C and S to this same volume, we may replace C and S by 
has disappeared from the volume &r dz. 

c and s and get 

2roz tg (Y + z2  tg2 a 

6 R =  

With s = Rc, (2) becomes 

D a 2 C  -- - 
ac 
at 1 -I- R d z 2  

a 2 C  
D- az2 

- 6 - + 2rOz tg (Y + z2 tg2 (4 )  
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1646 MILLER 

After having obtained an effective diffusion coefficient D' = D/( 1 + R), 
we may ignore the argumentation of eq. (2) and the conical geometry, and 
apply D' to the one-dimensional diffusion process occurring in the cylinder 
above the bottom section at z = O .  As D' depends on z, we write the 
differential equation 

For the solution we still need the boundary condition at the top of the conical 
medium at z = ZT = 5 cm. 

At first we consider the top boundary as impermeable: 

Numerical computation yielded the diffusion field at different times. The 
results are presented in Fig. 2 for the case a = 30". Comparison with the 
solution of the corresponding heat conductivity problem for the plate 
(a = 0), given by Carslaw and Jaeger (2 ) ,  shows, a much slower process in 
our case. This can be expected because the effective diffusion constant 
strongly decreases with z. 

SEPARATIVE DIFFUSION 

Different a, Constant Barrier Thickness 

We consider two substances, A and B, which have equal concentration: 

and which diffuse as heavy fluids into the cone wii:hout disturbing each other. 
The diffusion constant Ds is assumed to be 1% higher than DA: 

L)B/D* = 1.01 

The solute arriving at ZT is removed and collected. The boundary 
condition at the output side ( lc )  has to be changed for this procedure: 
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FIG. 2. Diffusion field in cone with impermeable top and different diffusion times z = Dr/Z$ 

The integrated outflows are 

and the separation factor S is defined here as 

Equation ( 5 )  also holds for negative values of a; for Q = 0 we get normal 
one-dimensional diffusion as in the infinite plate. Computations were made 
for a = +30, +5,  -5" and 0 at equal thickness Z ,  = 5 cm. DA was lo-' 
cm2/s. 

The diffusion field at different dimensionless times z = D t / g  is presented 
in Fig. 3. 
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FIG. 3a. Diffusion field in cone with C=O at top. 

I .o 

0.9 

0 . 8  

0.7 

0.8 

0 . 5  

0.4 

0.3 

0.2 

0. I 

0.5  1.0 1.5 2.0 2.5 3 . 0  3.5 4.0 4.5 5.0 

2- 
FIG. 3b. Diffusion field in cone with C=O at top. 
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FIG, 3c. Diffusion field in cone with C=O at top. 
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Q 8 -5' 

Z T =  5 c m  
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The curves of Fig. 3 cannot be generalized by changing the parameter ZT. 
Therefore, on the abscissa the thickness of the medium is not indicated by 
dimensionless lengths z /ZT  = 1 as in Part I but by its absolute value ZT = 5 
cm (3). 

The effect caused by increased ZT is discussed below. 
The computer results also yielded the separation factor S and the ratio p of 

integrated outflow to integrated inflow as time fumctions. These functions are 
presented in Figs. 4 and 5 .  

Both figures contain a check of the phenomenological method applied to 
the process. This check follows from a cornpariston of the curves for a = 4-5" 
and Q = -5" with the curve for the plate ( a  = 0) which was earlier obtained 
by the analytical method. This latter curve fits well between the two former 
ones, indicating a general reliability of the results. Deviations occur, 
however, in Fig. 4 in the range z < 0.04. It was earlier found that in this 
range the results are very sensitive against the choice of time intervals even 
for analytical solutions because of computer instability. 

\ 

1.20 1 \ 30 O -...- 
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*.. % *.. - ... - - ... 
------ ----- 
I - . - . - . - . - . -  -- 
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f -  

Frc. 4. Time function of separation factors of output. 
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FIG. 5. Time function of quantity of output. 

Doubled Thickness of Barrier 

Numerical solutions were also computed for the same problem with 
ZT = 10 cm while all other parameters remained unchanged. For the plate 
one can expect from the analytical solution that the output Q for a certain S 
increases linearly with the plate thickness while the diffusion time increases 
simultaneously with the square of the plate thickness (3) .  As we have no 
analytical solution for the present problem, we can only compare the 
computer results empirically. 

Table 1 was compiled by finding approximately equal separation factors S 
in the results for the 5 and 10 cm barriers and by collecting the attached 
values for diffusion time and integrated output. It appears that the output is 
approximately doubled at not too short times. For the diffusion times, we find 
a strong increase with a as expected. 
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TABLE 1 

S l O  

1.225 
1.143 
1.1 11 
1.091 
1.0605 
1.0503 

1.145 
1.128 
1.0665 
1.0386 
1.0286 

1.086 1 
1.0705 
1.0607 
1.0523 
1.0488 
1.0457 
1.0387 

1.221 
1.1476 
1.112 
1.09 1 
1.0603 
1.050 

1.15 
1.123 
1.0663 
1.0382 
1.0287 

1.0888 
1.07044 
1.0604 
1.0529 
1.04895 
1.0456 
1.0383 

= $30” 

(Y = $5“ 

(Y = -5” 

13.33 
10 
10 
10 
10 
10 

20 
10 
5.556 
5.555 
5.455 

3.33 
2.333 
2.125 
2.0 
2.0 
2.0 
2.0 

133 
1.928 
2.056 
2.0501 
2.00 
1.981 

1.68 x 104 
34.3 
2.286 
2.107 
1.947 

32.35 
4.925 
2.813 
1.9898 
1.985 
1.9735 
2.0076 

APPLICATION ON A PRODUCTION SCALE 

The initial separation which can also be considered as “enrichment” at 
transient diffusion is higher than with any other basic process used in isotope 
separation, but the time in which this highly enriched very small amount of 
substance is produced by diffusion through a membrane is very short. This 
limitation has apparently discouraged any consideration of transient diffu- 
sion for production purposes. However, the following investigations, based 
on computer analysis, show the feasibility of thr: method for obtaining high 
enrichment together with a reasonable output in a quasi-stationary 
process. 

First of all, one has to consider that not only the initial small output during 
the diffusion through a membrane is highly separated but also the substance 
within the barrier shows increasing separation toward the output side. Thin 
membranes are unsuitable for demonstration of this effect. We therefore 
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SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. I l l  1653 

consider here a barrier presented by a 5-cm thick cone section with a = 30” 
as studied in the previous paragraphs. 

The choice of the cone arose from the study of spherical diffusion. In Part 
I1 ( 4 )  we found that the ratio p = outputhput is highest for centrifugal 
spherical diffusion. This also holds for the diffusion from the tip of a cone. 

Another useful feature of the cone is the following: We apply a 
hydrodynamic counterflow of the medium which is contrary to the diffusion 
flow. Because of mass conservation we obtain a distortion of the diffusion 
field with little displacement of the highly separated substance near the 
output area but with high “backlash” for the little separated substance in the 
input region. In other words, an additional spatial separation is produced. 
We thus arrive at the following transformation. 

Counterflow in a Cone 

The displacement H o f  substance from 4 to [’ by shifting a volume u within 

We have 
the cone is found in the following manner (Fig. 6). 

aH bH 
and [ - H =  ‘= a - b  a - b  

A certain volume u, which is to be shifted, can be expressed by the 
parameters of the truncated cone: 

7T rr IT a3 - b3 
3 3 3 a - b  

u = -  a2[  - -b2( C - H )  = - H 

7T 
= ---H(a2 + ab + b2)  

3 

Now we express a and b by tg a, <, and H: 
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FIG. 6.  Parameters for counterflow transformation. 

and get 

7TH 
3 

v = -( c2 tg2 a + <( 4 - H )  tg2 ar -I- ( 5  - H)’ tg2 a) 

7T tg* Q 
( 3 l 2 H  - 3<H2 -I- H 3 )  - - 

3 

or 

3 v  
- c3 = ( H  - 5)3 

TT tg2 Q 

Thus the displacement H of substance at 6 by a shifted volume v is 

H =  
TT tg2 (Y 
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This formula also holds for H >  <. In this case H indicates the position 
beyond C = 0 jn the negative cone which is the downward continuation of our 
cone geometry. This region will not be considered here and we return to the 
coordinates of Fig. 1 which are linked to < by the relation 

4 = z + r, cotg a 

with r, = 1 and a = 30" we have < = z  -I- 6 

Enrichment by a Periodic Quasi-Stationary Process 

We are trying to remove the fraction near the input area, which shows 
small separation, from our diffusion field and trying to build up the remaining 
fraction with higher separation to a concentration profile with a higher 
gradient and increased output. 

For this purpose we select a curve from Fig. 3a, say z = 0.04. We remove 
all substances in the region z < 1.5 by pushing it back into the reservoir. This 
requires a volume shift of 9.97 mL. We assume that the concentration co is 
not changed by this procedure: The reservoir may be very large and the 
injected solvent may be removed by a special process which does not concern 
us here. 

Now we again allow diffusion to proceed from the reservoir for a duration 
of z = 0.04. After that we push a volume of 9.97 mL back again and repeat 
this cycle until a quasi-steady state is reached. This requires about 20 
cycles. 

The same procedure was performed by computation for z = 0.08 and 
z = 0.12 with the same volume shift and for z = 0.04 for a volume shift of 
16.34 mL. 

The quasi-steady-state profiles are presented in Figs. 7a and 7b and the 
outputs in Table 2. Columns 4 and 5 enable us to compromise between 
separation factor and output. The normal steady-state separation factor 
would be 1.01 in our case. @ of Column 5 still appears to be small, 
particularly for high S,  but the values presented only represent the integrated 
output for a single cycle. It would appear that for a separation factor which is 
tenfold to steady-state separation ( S  = 1 .  lo), a quasi-steady-state process of 
the kind described would be feasible. 

The present example cannot be considered as optimal, and variations of 
the geometry and of the parameters of the cycles may yield substantial 
improvements. Working with a cone angle a < 30" raises the output quantity 
considerably, as Fig. 5 shows. For smaller angles the time parameters z of 
the cycles will also be shorter and better suited for production purposes. 
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BUILD-UP FROM TRANSIENT STATE 
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4 2  

FIG. 7a. Quasi-steady-state concentration profiles (solid lines) with conjugated transient profiles 
(broken lines). Numbers refer to Table 2. 

TABLE 2 

Shifted 
volume eA 

No. r (crn3) s (per cycle) Stransient Qtansient 

1 0.04 16.34 1.2192 0.94 X 1.258 0.4 x 1 0 - l ~  
2 0.04 9.97 1.1452 0.85 X 1.258 0.4 x 10-l4 

4 0.08 9.97 1.0683 0.80 X 1.193 0.6 x 10-9 
3 0.064 9.97 1.0875 0.15 X 1.218 0.14 X lo-'' 

5 0.12 9.97 1.0436 0.73 X lod2 1.143 0.28 X 
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FIG. 7b. Profiles of separation factors for r = 0.04 and v = 9.97 cm3 (Case 2 in Table 2). 
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