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Separative Diffusion in the Transient State. lll.
Diffusion of a Heavy Fluid in a Cone

L. MILLER

NATIONAL CHEMICAL RESEARCH LABORATORY
COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH
PRETORIA 0001, SOUTH AFRICA

Abstract

Diffusion of a heavy fluid into a cone is approximately one-dimensional. This
process can be calculated by the differential equation of diffusion with chemical
reaction. Numerical computation was applied for the study of separative diffusion.
Separation factors and output quantities were found for cone angles of +30, +5, and
—5° and for double barrier thickness. A periodic quasi-steady-state process is
proposed which yields a reasonable output with tenfold steady-state separation.

INTRODUCTION

A cone can be considered as a section of a sphere. When we have
impermeable walls and no convection of the diffusing substance, the diffusion
field shows the features of spherical diffusion. This can be demonstrated by
diffusion of a dye from the bottom of a glass funnel into the cone of the funnel
filled with a gel medium. The diffusion front, which is initially plane, turns
during the diffusion process into curved spherical shells having their center in
the tip of the cone. However, when we allow a solution of colored salt to
diffuse at the same geometry into liquid water, the areas of constant
concentration are not indicated by spherical shells but by plane layers. At
low viscosity the curved areas are unstable and are leveled down by
convection. The result is an approximately one-dimensional diffusion
process.

1643
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ONE-DIMENSIONAL DIFFUSION PROCESS IN A CONE

For the calculation of the process we make the following assumptions (Fig.
1). The bottom of the cone is given by a circular area with radius r, = 1 at
z=0. In this area the concentration is always

cg = 1 = constant (la)
for all times ¢, while for
0<z< ZT
(1b)
c=0att=0

During the diffusion process the concentrations in the cone are constant for
a certain z. Therefore the problem is solved when the diffusion process in the
cylindrical column above the bottom area is known. We describe the process
from a phenomenological view: Convection processes which establish
continuously hydrostatic equilibrium at a microscopic scale do not appear in
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F1G. 1. Geometry of diffusion problems.
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our evaluation because they act faster than diffusion, and diffusion remains
the rate-determining process. ‘

The effective phenomenological diffusion coefficient is found in the
following way: The differential equation of the diffusion in the cylinder above
the bottom area is the same as for a diffusion process in the course of which
parts of the freely diffusing substance ‘““disappear” or “‘become fixed”” by an
irreversible chemical reaction. In our case the “disappearance” is caused by
horizontal spreading into layers which increase with z. Then, according to
Crank (), the diffusion is governed by the equation

de -p dc _ os 2)
ot 0z? ot

where ¢ is the concentration of the free solute and s is the concentration of the
immobilized solute.
From Fig. 1 we find the ratio

R=5s/c (3a)

At a certain z the total amount of substance in a layer with thickness dz
is
Ngy=c(z)(ro +z tg @)*m dz
while the amount of “free”” substance is

C(z) = c(z)rdn dz

The difference N(z) — C(z) = S(z) is the “‘immobilized” substance which
has disappeared from the volume 737 dz.

As we refer both C and S to this same volume, we may replace C and S by
c and s and get

2roztg e + 22 tg% a

2 (3b)
0
With s = Re, (2) becomes
6c D ¥
ot 1+R 022
r o%c
= D (4)

i+ 2rztga+ 22 tg2 a 0z?
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After having obtained an effective diffusion coefficient D' = D/(1 + R),
we may ignore the argumentation of eq. (2) and the conical geometry, and
apply D' to the one-dimensional diffusion process occurring in the cylinder
above the bottom section at z=0. As D' depends on z, we write the
differential equation

de 0 dc 0 3D dc
= D’ = ) )
ot oz oz 0z rA+2rztgatzitg?a oz

For the solution we still need the boundary condition at the top of the conical
medium at z =Z;= 15 cm.
At first we consider the top boundary as impermeable:

dc/0z=0fort — = atz = Z, (1c)
Numerical computation yielded the diffusion field at different times. The
results are presented in Fig. 2 for the case @ = 30°. Comparison with the
solution of the corresponding heat conductivity problem for the plate
(a=20), given by Carslaw and Jaeger (2), shows a much slower process in

our case. This can be expected because the effective diffusion constant
strongly decreases with z.

SEPARATIVE DIFFUSION

Different «, Constant Barrier Thickness
We consider two substances, A and B, which have equal concentration:
ch=cB=1latz=0fort — (1d)

and which diffuse as heavy fluids into the cone without disturbing each other.
The diffusion constant Dy is assumed to be 1% higher than D,:

DB./DA =1.01

The solute arriving at Zr is removed and collected. The boundary
condition at the output side (1c) has to be changed for this procedure:

cf=c2=0fort - watz=2Z, (le)
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Fic. 2. Diffusion field in cone with impermeable top and different diffusion times r = Dt/Z%

The integrated outflows are

t
Qas = j(: D, grad c, pdt

and the separation factor S is defined here as

Qs /b

S =
Oa 6‘3

(6)

Equation (5) also holds for negative values of a; for @ = 0 we get normal
one-dimensional diffusion as in the infinite plate. Computations were made
for @ = +30, +5, —5° and 0 at equal thickness Z;=5 cm. D, was 107°
cm?/s.

The diffusion field at different dimensionless times 7 = Dt/Z? is presented
in Fig. 3.
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FIG. 3a. Diffusion field in cone with C=0 at top.
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FIG. 3b. Diffusion field in cone with C=0 at top.
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FIG, 3c. Diffusion field in cone with C=0 at top.
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The curves of Fig. 3 cannot be generalized by changing the parameter Z .
Therefore, on the abscissa the thickness of the medium is not indicated by
dimensionless lengths z/Z; = 1 as in Part I but by its absolute value Z7= 5
cm (3).

The effect caused by increased Zy is discussed below.

The computer results also yielded the separation factor .S and the ratio p of
integrated outflow to integrated inflow as time functions. These functions are
presented in Figs. 4 and 5.

Both figures contain a check of the phenomenological method applied to
the process. This check follows from a comparison of the curves for « = +5°
and & = —5° with the curve for the plate (@ = 0) which was earlier obtained
by the analytical method. This latter curve fits well between the two former
ones, indicating a general reliability of the results. Deviations occur,
however, in Fig. 4 in the range 7 < 0.04. It was earlier found that in this
range the results are very sensitive against the choice of time intervals even
for analytical solutions because of computer instability.

f [ \ - = 30°

0.0l 0.04 0.08 o.12 0.1 0.2 0.24 0.28 0.32

FiG. 4. Time function of separation factors of output.
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Fi1G. 5. Time function of quantity of output.

Doubled Thickness of Barrier

Numerical solutions were also computed for the same problem with
Zr=10 cm while all other parameters remained unchanged. For the plate
one can expect from the analytical solution that the output Q for a certain S
increases linearly with the plate thickness while the diffusion time increases
simultaneously with the square of the plate thickness (3). As we have no
analytical solution for the present problem, we can only compare the
computer results empirically.

Table 1 was compiled by finding approximately equal separation factors §
in the results for the 5 and 10 c¢m barriers and by collecting the attached
values for diffusion time and integrated output. It appears that the output is
approximately doubled at not too short times. For the diffusion times, we find
a strong increase with « as expected.
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TABLE 1
Ss S10 to/1s 010/0Qs
a=+30°
1.225 1.221 13.33 133
1.143 1.1476 10 1.928
1.111 1.112 10 2.056
1.091 1.091 10 2.0501
1.0605 1.0603 10 2.00
1.0503 1.050 10 1.981
a=+5°
1.145 115 20 1.68 % 104
1.128 1.123 10 34.3
1.0665 1.0663 5.556 2.286
1.0386 1.0382 5.555 2.107
1.0286 1.0287 5.455 1.947
a=—5°
1.0861 1.0888 3.33 32.35
1.0705 1.07044 2.333 4.925
1.0607 1.0604 2.125 2.813
1.0523 1.0529 2.0 1.9898
1.0488 1.04895 2.0 1.985
1.0457 1.0456 2.0 1.9735
1.0387 1.0383 2.0 2.0076

APPLICATION ON A PRODUCTION SCALE

The initial separation which can also be considered as “‘enrichment’™ at
transient diffusion is higher than with any other basic process used in isotope
separation, but the time in which this highly enriched very small amount of
substance is produced by diffusion through a membrane is very short. This
limitation has apparently discouraged any consideration of transient diffu-
sion for production purposes. However, the following investigations, based
on computer analysis, show the feasibility of the method for obtaining high
enrichment together with a reasonable output in a quasi-stationary
process.

First of all, one has to consider that not only the initial small output during
the diffusion through a membrane is highly separated but also the substance
within the barrier shows increasing separation toward the output side. Thin
membranes are unsuitable for demonstration of this effect. We therefore
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consider here a barrier presented by a 5-cm thick cone section with a = 30°
as studied in the previous paragraphs.

The choice of the cone arose from the study of spherical diffusion. In Part
II (4) we found that the ratio p = output/input is highest for centrifugal
spherical diffusion. This also holds for the diffusion from the tip of a cone.

Another useful feature of the cone is the following: We apply a
hydrodynamic counterflow of the medium which is contrary to the diffusion
flow. Because of mass conservation we obtain a distortion of the diffusion
field with little displacement of the highly separated substance near the
output area but with high “backlash” for the little separated substance in the
input region. In other words, an additional spatial separation is produced.
We thus arrive at the following transformation.

Counterflow in a Cone
The displacement H of substance from ¢ to £’ by shifting a volume » within
the cone is found in the following manner (Fig. 6).

We have

Sf-H _ b

T
Q

A certain volume », which is to be shifted, can be expressed by the
parameters of the truncated cone:

T 2{ e b2(§ 0 T H o — b
y=——gq*f —— — =
3 3 3 a—>b

T
=—3—H(a2 + ab + b?)

Now we express a and b by tg «, ¢, and H:

o b
R
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\G 747/

Fi1G. 6. Parameters for counterflow transformation.

and get
mH 2
v=—S(Cte at+ (- Htg a+ (¢~ H tg? a)
Ttg? a R
=~—3—(3§H—3¢H2+H3)
or
3v
T C=H-
Tig® «@

Thus the displacement H of substance at { by a shifted volume v is

3 3y
H= —2—(:3+{
Tig .
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This formula also holds for H > ¢{. In this case H indicates the position
beyond ¢ == 0 in the negative cone which is the downward continuation of our
cone geometry. This region will not be considered here and we return to the
coordinates of Fig. 1 which are linked to { by the relation

{=1z+rycotga

with 7, =1 and a = 30° we have { =z ++/3.

Enrichment by a Periodic Quasi-Stationary Process

We are trying to remove the fraction near the input area, which shows
small separation, from our diffusion field and trying to build up the remaining
fraction with higher separation to a concentration profile with a higher
gradient and increased output.

For this purpose we select a curve from Fig. 3a, say ¢ = 0.04. We remove
all substances in the region z < 1.5 by pushing it back into the reservoir. This
requires a volume shift of 9.97 mL. We assume that the concentration ¢ is
not changed by this procedure: The reservoir may be very large and the
injected solvent may be removed by a special process which does not concern
us here.

Now we again allow diffusion to proceed from the reservoir for a duration
of 7= 0.04. After that we push a volume of 9.97 mL back again and repeat
this cycle until a quasi-steady state is reached. This requires about 20
cycles.

The same procedure was performed by computation for 7= 0.08 and
= 0.12 with the same volume shift and for 7= 0.04 for a volume shift of
16.34 mL.

The quasi-steady-state profiles are presented in Figs. 7a and 7b and the
outputs in Table 2. Columns 4 and 5 enable us to compromise between
separation factor and output. The normal steady-state separation factor
would be 1.01 in our case. Q* of Column 5 still appears to be small,
particularly for high .S, but the values presented only represent the integrated
output for a single cycle. It would appear that for a separation factor which is
tenfold to steady-state separation (S = 1.10), a quasi-steady-state process of
the kind described would be feasible.

The present example cannot be considered as optimal, and variations of
the geometry and of the parameters of the cycles may yield substantial
improvements. Working with a cone angle a < 30° raises the output quantity
considerably, as Fig. 5 shows. For smaller angles the time parameters 7 of
the cycles will also be shorter and better suited for production purposes.



13: 37 25 January 2011

Downl oaded At:

1656 MILLER

7// BUILD-UP FROM TRANSIENT STATE
//z TO STEADY $TATE

N

05 1,0 1,5 20 25 30 35 40 45 50
—»z

Fi1G. 7a. Quasi-steady-state concentration profiles (solid lines) with conjugated transient profiles
(broken lines). Numbers refer to Table 2.

TABLE 2
Shifted
volume oA
No. T (Cm3) N (per cycle) Stransient transient
1 004 1634 12192  094%X107° 1.258 0.4 X 10714
2 0.04 997 11452 085X1076 1.258 0.4 X107
3 0.064 997 10875 0.15x1072 1.218 0.14 X 10710
4 0.08 997 10683  080X1073 1.193 0.6 X 1079
5 0.12 997 10436 073X 1072 1.143 028 X107




13: 37 25 January 2011

Downl oaded At:

SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. }lI

1,20

TRANSIENT

I'd ,,,

l)’

’
A’ STEADY
STATE

i Il 1

0% 10 K5 20 2,5 30 35 40 4,5
. —_— 2

5,0

1657

F1G. 7b. Profiles of separation factors for = 0.04 and v = 9.97 cm? (Case 2 in Table 2).
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